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Summary 
Material parameters (inert and fatigue) are obtained from 

naturally flawed specimens. If the inert strength parameters 
characterizing the two-parameter Webull cumulative distribu- 
tion function are known, the fatigue parameters for the power, 
Paris, and Walker subcritical crack growth equations can be 
obtained from the appropriate rupture data of standard uniaxial 
test specimens loaded in static, dynamic, or cyclic fatigue. 
Equations are developed for fatigue parameter analysis using 
the least-squares best-fit and/or the maximum likelihood esti- 
mation method. When the inert parameters are unknown and 
only subcritical crack growth rupture data are available, the 
material parameters defining the specimen's cumulative distri- 
bution function are obtained via the median deviation method. 
Example problems are included. 

Introduction 
The objective of this report is to introduce a nuxiber of 

techniques to obtain the necessary material parameters for a time- 
dependent reliability analysis of monolithic structural ceramic 
components. These parameters (inert and fatigue) are evaluated 

from fast-fracture and timedependent stress rupture data of 
uniaxially loaded test specimens. Ideally, the data are obtained 
under conditions representative of the service environment. 

Static, dynamic, and/or cyclic fatigue loading result in a 
phenomenon called subcritical crack growth (SCG). Static 
fatigue is defined as the application of a constant load over a 
period of time. Dynamic fatigue is the application of a constant 
stress rate over a period of time, and cyclic fatigue is the 
repeated application of a loading sequence. Under tensile 
loading, SCG initiates at existing flaws and continues until a 
flaw reaches a critical length, causing catastrophic failure. 
Various laws such as the power (ref. l), Paris (ref. 2), and 
Walker (ref. 3) are used to describe SCG. These laws are 
usually obtained from mode I laboratory tests of an introduced 
crack of known geometry. An uncertainty is involved in relat- 
ing these results to a body containing a random distribution and 
orientation of inherent flaws of varied geometry and their 
interaction under mixed-mode loading. Parameters ofathe vari- 
ous SCG flaws, derived from naturally flawed test specimens, 
tend to compensate for these uncertainties, leading to better 
agreement between prediction and experimental data. 

For the power, Paris, and Walker laws, analytical methods 
are derived to estimate the material parameters for volume 
flaws. Analogous equations are obtained for the condition 
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where surface flaws are dominant. Using the least-squares 
best-fit (LSBF), the median deviation (MD), and the maximum 
likelihood estimation (MLE) methods, equations are devel- 
oped for material parameter estimation. The Theoretical Devel- 
opment section consists of a brief development of background 
equations for each of the SCG laws, followed by descriptive 
techniques for estimating the parameters. 

Two example problems are given in the section Experi- 
mental Applications. Data from soda lime glass ring-on- 
ring and sintered alpha silicon carbide (SASC) C-ring and 
O-ring specimens (refs. 4 and 5 and Nemeth, N.N. et al.: 
CARESLIFE Ceramic Analysis and Reliability Evaluation 
of Structures Life Prediction Program. NASA Lewis Re- 
search Center, unpublished data, 1993.) are used to illus- 
trate the application of some of the methods derived herein. 
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Theoretical Development 

The lifetime reliability of a structural ceramic component 
depends on the material‘s inert parameters (m, oo) and the 
fatigue parameters (N, B) which characterize subcritical crack 
growth. Material parameter estimation methods are developed 
for the power, Paris, and Walker equations. The power law 
expresses the crack growth increment per unit time, whereas 
the Paris and Walker models express the crack growth incre- 
ment per cycle. The analytical relationships in this section have 
been derived for volume flaws; analogous relations are obtained 
for the case where surface flaws dominate: 

Power Law 

Analysis.-Dynamic or cyclic fatigue stress in conjunction 
with the power law is transformed into an equivalent static 
stress through the use of g-factors. Implicit in this conversion 
is the assumption that overthe same time interval the equivalent 

static stress will cause the same crack growth as the dynamic or 
cyclic stress (ref. 6). 

For the uniaxial case, the crack growth is expressed as 
dadt = AKIN. For volume flaws the general case is 

where a is the half-crack length; Yis the location point; tis the 
time; A is the material fatigue parameter; KIeq is the mode I 
equivalent stress intensity factor; and N, is the volume fatigue 
exponent. 

The term Kleq is defined as 

where oIeq is the mode1 equivalent stress and Y is the geometric 
crack shape parameter. 

Rearranging equation (2) and solving for the crack half- 
length yields 

(3) 

where KIc is the mode I critical stress intensity factor and oIeq,i 
is the equivalent stress at time t. From equations (1) to (3), the 
equivalent stress distribution at a failure time tfis transformed 
to its inert effective stress distribution oleq,o (‘r, at time t = 0 
(refs. 7 and 8): 

where oIeqi0 (Y,f) is the same as oIeq(Y,t) 
constant B 1s 

-I 

and the fatigue 

2 
A Y 2 K Z - ” ( N v  -2) 

B =  

When the initial flaw size is much smaller than the flaw size at 
failure and the fatigue parameter N, is large, as is the case for 
ceramics, equation (4) reduces to 

3 



L J 

Next follows an analysis of static and cyclic fatigue. Satisfying 
the assumption that the equivalent static stress distribution 
CT (Yj produces the same amount of crack growth as the 
penodic cyclic stress distribution over one cycle's time interval 
T results in 

'e4 

where the g-factor is defined as 

(7) 

The g-factor for static and dynamic fatigue are available in 
closed form. Numerical integration is required for most load 
conditions. A summary of g-factors for various loading func- 
tions is given in table I. 

The fatigue parameters Nand B are calculated from rupture 
test data obtained from uniaxially loaded specimens. For a 

given applied constant static stress level j, oIeqCmm (Yo)] . = 

0 fi (Yo) and the time to failure of the ith specimen is $. For 
static or cyclic fatigue, the g-factor will appear in the compu- 
tation of the maximum equivalent static stress at location Yw 
The data (ofi( Yo ), tfii) are ranked for each stress levelj, where 
j varies from 1 to q, and i varies from 1 top. For the ith specimen 
of rank r, using Benard's formula (ref. 9), P3i = (r - 0.3)/ 
(p + 0.4). 

For the specimen Uniaxial Weibull model, the characteristic 
strength om is dependent on the specimen geometry. The 
probability of failure Pfii is expressed as 

[ I 

where m, is the Weibull modulus, and Yo is the location of the 
maximum principal stress at failure. 

L J 

Subscript 1 denotes the maximum principal tensile stress at 
fracture. Equation (10) with ofi equal to olj represents the 
transformation of the maximum principal static stress 
o,(Yo)g II N ,  (Yo) at tfiitotheinertstress o 1 j o ( y o )  at t = 0 -  

For the uniaxial Weibull model, the scale factor oov is a 
material property and the probability of failure is expressed as 

with the integration over the volume V and 

L J 

Equation (12) represents the transformation of the equivalent 
static stress distribution at time $i to an inert stress distribution 
oljio(Y) at t = 0. 

For the cornpatability of failure probabilities, a basic require- 
ment is that all models produce the same probability of failure 
for a uniaxial stress state as that obtained for the specimen 
uniaxial Weibull model. To satisfy this requirement, the value 
of N, remains invariant whereas the fatigue parameter B will 
depend on the probability-of-failure model. All failure model 
dependentfatigue parameters (suchas B,,the specimenuniaxial 
Weibull model) are directly proportional to B which is given by 
equation (5). For large values ofN,, all failure model dependent 
fatigue parameters approach a common value. 
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Loading function, 
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aNerneth, N.N. et al.: CARESLIFE Ceramic Analysis and Reliability Evaluation of Structures Life Prediction Program, NASALewisResearchCenter, unpublished 

”Nhen a,, < 0. the value of the g-factor is generally obtained numerically by integrating over the time interval where qeqC(r) 2 0. The following simple example 
data, 1993. 

illustrates how this case is treated. Given a sawtooth cyclic wave defined by (f, 0) over time interval T as (0, a,,), (T/2, u,), and (T, o,,) with R = o,,/a, 

= - 1/3. The interval where o,@ 2 0 is T = 3T/4. Hence, g = 2/T 
Ti2 N 

= 2.f,d[2(1- R ) t  l/T + R} dr. Thus, the resulting g-factor is g = 3/[4(N + I)]. 
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Equating the risk of rupture of the specimen uniaxial Weibull 
model to that of the uniaxial Weibull model results in 

where V, is the effective volume for no subcritical crack 
growth, and Vef is the effective volume when subcritical crack 
growth occurs: 

and 

Using the above equations to eliminate oev and B,, from the 
specimen uniaxial Weibull model yields 

L 

where I%, = m, /(Nv - 2).  Thus, 

tfji = =jj -N ( y o  ) = c..o-Nv(Yo) J 1  jj 

(1 4) 

where Cjj varies with the probability of failure PJp Taking the 
natural logarithm of equation (13) and manipulatmg it algebra- 
ically yields 

This equation is the basis for a least-squares best-fit evaluation 
of the fatigue parameters N, and B,, using all the available 
rupture data. If the same risk of rupture is maintained, from 
equation (13), all fatigue rupture data (ojj(Yo), tfji> can be 
transformed to an equivalent data set (oT( Yo), tvi) for a given 
value of N,: 

oT(Yo) = min o ('Y ) I 3  0 1  

Subscript T denotes the transformed data. The probability of 
failure for this case is 

Parametereslimation.-The following are techniques which 
may be used to determine the parameters for static and cyclic 
and then for dynamic fatigue using the power law formulation 
just described. 

Method I-Least-squares best fit using median values: The 
inert material parameters mv and oov are known. For the median 
values, and taking the natural logarithm, equation (14) yields 

where subscript 0.5, denotes the median value. Since Pjji = 0.5, 
intercept (Cji)o.5 is a constant. Substituting the set of median 
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values (ofj(Yo), $i)0.5 into the above equation permits solving 
for slope N,, and intercept (Cji)o.5, From the known value of N,,, 
g( Yd and Vef can be computed. From the value of the inter- 
cept, B, is obtained. 

Method 11-Maximum likelihood estimation using median 
values: The inert material parameters are known. Based on the 
least-squares best-fit result for N, as astarting value (Nassumed), 
the median values (D,( Yo), $i)o.5 are transformed via equa- 
tion (16) to the data set (ad Yo), tTji>o.5. The maximum likeli- 
hood estimation method is applied to equation (1 7) with tTji as 
the variate to obtain the value &,. From this value, Ncomputed 
can be determined and compared with Nassurned. When both 
values are within some specified tolerance, the solution is 
obtained. If not, the two values are averaged and the process is 
repeated. After convergence, the g-factor, Vep and then B, are 
evaluated. 

Method ZZZ-hast-squares best f i t  using all fatigue rupture 
data: The inert material parameters are known. The data are 
ranked for each value of a$( Yo) in accordance with the magni- 
tude of ffji to obtain the data set (o,(Yo). f f j i ,  Pfji). 
Substituting these values into equation (1 5) permits solving for 
N,  and the intercept. The value of N,, is used to evaluate the 
g-factor and Vef, and the intercept is used to solve for B,,,,,. 

MethodN-Maximum likelihood estimation using allfatigue 
rupture data: The inert material parameters are known. A value 
of N, is assumed based on the least-squares best-fit regression 
analysis. All the data are transformed via equation (16). The 
maximum likelihood estimation method is applied to equa- 
tion (17) with tTji as the variate to solve for &,,. The value of N, 
is computed and compared with the assumed value. These two 
values are averaged and the process is repeated until the 
assumed value is within a specified tolerance of the computed 
value. When this tolerance is achieved, g( Yo), Vq, and B,,,,, are 
evaluated. 

Method V-Least-squares bestflt to evaluate unsubscripted 
B: The value of B in equation (6) is not model dependent and can 
be obtained by using both inert and fatigue rupture data. 
Equation (6) for static and cyclic fatigue reduces to 

where olji,o( Yo) is theinert strength (maximum principal stress 
at fracture) obtained from the rupture data associated with 
(ad Yo), %i) by equivalence of rank (PJi). From equation (1 8) 
after some algebraic manipulation, 

c -7 

For the set of data (a,( Yo): z&, PBi), the equivalence of failure 
probability allows detemnmg (alji P,$. These values are 
substituted in the above equation i6 solve for N,, and the 
intercept. The g-factor is evaluated using the value of N,,, and 
B is obtained from the intercept. A one-to-one correspondence 
of the inert data to the fatigue data is assumed. 

Method VI-Median deviation: The median deviation 
(ref. 10) method is ameasure of the spread of the data about the 
median value. This approach is used when the inert parameters 
are unknown and only time-dependent fatigue rupture data are 
available. From the minimization of the median deviation, the 
material parameters m,, N,, and B, are evaluated. For 
an assumed value of N,, the data (a,( Yo), $i) are transformed 
via equation (16) into (ad Yo), tVi). From the transformed data, 
the median deviation for the total number of data points qp is 

The process is iterative, covering an appropriate range of N,, 
values. The value of N,, associated with the minimum value of 

is the solution. Once the value of N, has been determined, the 
Weibull modulus can be obtained for known Pfi since 
I%,, = m J(Nv - 2); hence 

After computing g( Yo) and Vef the value of (BW a:-2) is 
then estimated from the median value [UT (Yo), tvi]o.5 via 
equation (1 7). 

Dynamic fatigue.-For dynamic fatigue tests at aconstant 
stress rate & j ,  the time to failure of the ith specimen is t . or, 

is aji (!Q. Replacing 0, (Yo) in equation (13) with ap (Yo), 

$i with ofi 

equivalently, the maximum stress at failure associated wit i! k j  

Yo), and g( Yo) with ll(N,, + 1) yields 
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Since bj is the independent variable, equation (22) becomes 

At location YID, since mi = bjtjji, where @i is the time to 
failure of the i* specimen under stress rate bj , another form of 
equation (22) is 

Similar to equation (14), equation (22) can be expressed as 

ofijii(Yo) = bj 14Nv+1)  (yo)c . ; (Nv+l)  

Maintaining the same risk of rupture for the specimen uniaxial 
Weibull model, all o,(Y0), bj(YO, are transformed into 
o q j  ('yo), bTCYb> vi8 

Thus 

This form is used in conjunction with the MLE method with 
OTji as the variate. 

For the median deviation method, transforming the data via 
equation (24b) results in the following: 

N ,  +I 

Parameter estimation methods I to VI are now applicable to the 
dynamic fatigue case. 

Paris Law 

Cyclic effects on slow crack growth are dependent on the 
duration and the number of cycles. Modeling for cyclic effects 
is based on phenomenological cxitera (Paris law, Walker law) 
traditionally used for metal fatigue. As shown in a previous 
section, the Power law expresses the crack growth increment 
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perunittime. This section WilldescribetheParis law formulation, 
which expresses the crack growth increment per cycle. 

Analysis.-The Paris law formulation describes the cyclic 
loading by incorporating in the analysis the difference between 
the maximum and minimum stress intensities. The rate equa- 
tion is given as 

For a periodic cyclic stress, R(Y,n) and ozeqc,, (Y,n) are 
independent of h; hence, 

where A, is a material fatigue parameter, 

For [ ~ r ; ~ ~ ~ ~ ~  (Y)[l - R(Y)INV nf /B} >> 1, equation (32) is 
approximated as 

and 

Equation (33) represents the transformation of the stress distri- 
bution at n = nf to its inert stress distribution at n = 0. 

The fatigue parameters N, and B are obtained from cyclic 
rupture data tests on uniaxially loaded speciments. For a given 
value ofj, associated with stress level o$ Yo) = [qeqc- ( Yo)lj, 
where Yo is the location of the maximum cyclic stress, the 
number of cycles to failure for the i* specimen is nap The data 
{ odY0) [ 1 - Rj( Yo)], nfiii) are ranked for each value of j, where 
j varies from 1 to 4 and i varies from 1 top. For the ith specimen 
of rank r subjected to stress level j, the failure probability is 

where R is the ratio of the minimum to maximum equivalent 
stress in a loading cycle, 

and n is the number of cycles. From equations (27) to (29), the 
transformed stress becomes 

r - 0.3 
p + 0.4 

Pfii = - 

Maintaining the same risk of rupture for the specimen uniaxial 
Weibull model and the uniaxial Weibull model results in 

where 

2 B =  
A 0 KNv-2(Nv IC - 2)Y2 

L J 
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and 

where 

and 

From equation (35) 

8n (n8i) = 8n Cji - N ,  8n - Rj(Yo)]} (38) 

and 

Yd [ 1 - Rj( Yd] the independent variable and n the 
variable. Maintaining the same risk of rupture #r all 

where 

and substituting into equation (34), 

Pfii = 1 - exp 

Parameter estimalion.-The following are techniques which 
may be used to determine the parameters for cyclic fatigue using 
the Paris law formulation just described 

MethodI-Least-squares bestfit using median values: The inert 
parameters m,, and oov are known. For the median values, 
equation (38) becomes 

where the subscript 0.5 denotes the median value. Since 
Pfii = 0.5, the intercept h(Cji)o.5 is a constant. Substituting the 
set of median values into the above equation determines N, and 
(qi)o.5; Vefis computed and B,, is found from the value of the 
intercept. 

Method II-Maximum likelihood estimtion using median 
values: The inert parameters are known. An initial value of N, is 
assumed based on a least-squares best-fit regression analysis; 
(odYd [l -R&Yd], nfij}oa5 are transformed via equation (40) 
to the data set {oT(Yo) [l - RT( Yo)], nqi}o.s. The maximum 
likelihood estimation method is applied to equation (41) with 
(+ji)0.5 as the variate; then the value of G,, is obtained. From 
this value, NmSd is compared with Ncomputed. The process is 
iterative. When both values are within some specified tolerance, 
the solution for N, has been found. After convergence, V@ and 
B,, are evaluated. 

Method III-Least-squares best fit using all fatigue rupture 
data: The inert parameters are known. The data for each value 
of ofi ( Yo) [ 1 - Rj (Yd] are ranked in accordance with the 
magnitude of nfii to obtain the data set { ofi (Yo) [ 1 - Rj (Yo)], 
nfii,Pfii]. These values are substituted in equation (39) to evalu- 
ate N, and the intercept; Vef is determined and from the value of 
the intercept, B,, is obtained. 

10 



Method IV-Maximum likelihood estimation using all 
fatigue rupture data: The inert parameters are known. A value 
N, = NmSd is assumed based on the least-squares best-fit 
results. The data are transformed through equation (40) to data 
set {oT(Yo) [l - &(Yo)], nri}. The maximum likelihood 
estimation method is applied to equation (41) with nvi as the 
variate to solve for 5, . The value of N, is computed and then 
compared with the assumed value. These two values are aver- 
aged and the process is repeated until the assumed value is 
within some specified tolerance of the computed value; Vg and 
B,,,,, are evaluated. 

Method V-Least-squares bestJit to evaluate unsubscripted B 
The value of B, equation (31), that is not model dependent can 
be obtained using all the rupture data (inert plus fatigue). Intro- 
ducing the subscripts i andj into equation (33) with reference to 
specimen number and stress level, respectively, yields 

9 P 

P q  j = 1  i=l 
- 

The process is iterative. covering an appropriate range of N, 
values. The value of N, associated with the minimum value of 
the median deviation MD- is the solution. With N, and PBi 
known, 

en(l-pji) -I 1 (44) where n is the number of cycles. From equations (46) to (48), we 
en(1- OS)-' obtain the transformed equivalent stress distribution at n = nf 

to its equivalent inert stress distribution at n = 0 en I 

The value of ~ ~ o z - ~  is then estimated from the median 
value (0, ( Yd [ 1 - R, ( Yd], nVi}o.5 via equation (41). 

Walker Law 

Analysis.-As illustrated in the previous section, the Paris 
law formulation describes the cyclic loading by incorporating in 
the analysis the difference between the maximum and minimum 
stress intensities. However, this approach does not take into 
account the effect of the stress ratio R (i.e., the ratio of the 
minimum to maximum cyclic stress). For metals, it was ob- 
served that the higher the positive value of R, the greater the 
amount of crack growth. To incorporate the effect of stress ratio 
on crack growth, the Walker formulation is used. The Walker 
law rate equation is given as 

Nv-2(yo) = 102 ( yo  1F-T ( y o  ~ 

Olji,O (42) 

and 

tn  n 81 . + 2tn oui,o(~o) = N, (e, olji,o(~o) - tn{ofi(yo) 

(46) 
where oljto (Y& is the inert maximum principal stress associ- 
ated with nji by the equivalence of rank. Thus, the inert stress 
oljto is matched with { oB (Yd [l - Rj (Yo)], njj} .  The above 
equation is Used to Solve for N,, and from the interC% evaluate B. 

Method VZ-Median deviation: The median deviation meas- 
ures the spread of the data about the median value. The median 
deviation method is used when the inert parameters are unknown 
and only subcritical crack growth rupture data are 
available. From the minimization of the median deviation, 
the material parameters m,, N,, and the product B,,,,,C?-~ 
are evaluated. For an assumed value of N,, the data { of (Yo) 
[l - Rj ( Yo)], nji} are transformed via equation (40) into 
{ oI( Y;b> [ 1 - RT( Yd], nTii}. From the transformed data, the 
median deviation for the total number of data points qp is 

where Kzeq = Kzeqc- and Q, is the Walker material fatigue 
parameter. When Q, equals N,, the Walker law reduces to the 

law: 

A Kleg = Yoleqcmax (Y, n)[l- R(Y,  n ) ] & @ % )  (47) 

where 

Cleqcdi, (Y* n) 

czeqc,, (Y, n) 
R(Y,n)  = 

and 
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my 4% -2)- I( Q, 'IV/'-~ N, vef tQv-2Ym, ~ - 

fii 
n 

Pfii = 1 - exp - Q, -2 

afi (yo )[I - R j  (yo I] 

where 

For ozeqc.( %n) and R( T n ) ,  independent of n, 

and 

where 

" j i  - - c ji jj (Yo# - Rj(Y0)p (53b) 

The fatigue parameters N,, Q,,, and B are obtained from cyclic 'ai = en 'ji - % ojj(yo) - Nv en - R j ( y O ) ]  (54) 
rupture data on uniaxially loaded specimens. For a given value 
of j, associated with oj(Yo) = [oIeqcm(Yo)$, the maximum 
principal stress in the specimen, the number of cycles to failure 
ofthe i* specimen is n . The data 10, ( ~ d  [I - R~ (Y~) ] ,  nJiii, 

varies from 1 top. For the i* specimen of rank r, 
(p + 0.4). With this subscript notation, equation 

and 

are ranked for each v 2 ue of j ,  where j varies from 1 to q and i 

- Nven 1 - R .  yo + en [ I (  )] [ t-,. ) (55) 
v(Q, -2) Im, 
ef 
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Maintaining the same risk of rupture for the specimen uniaxial 
Weibull model, all fatigue rupture data { oj (Yo) [ 1 - Rj (Y,], 
nf i }  are transformed to an equivalent data set { o,( Yo) 
[ 1 - R ,  ( Y, ] ,  nvi} for given values of Q, and N,: 

where oT (Y, and R, ( Yo) are the lowest values of the set of 
data {of (Yo) [ l  - Rj (Y,]}. Substituting equation (56) into 
equation (53) yields 

(57) 

Parameter esti&*on.--The following are techniques which 
may be used to determine the parameters for cyclic fatigue using 
the Walker law formulation just described. 

Method I-Least-squares best-fit regression plane using 
median values: The inert parameters oov and m, are known. 
The data median values (oj ( Yo) [l  - Rj (Yo)], njj)o.5 are substi- 
tuted into equation (54); Pji = 0.5 and ci is now constant; Cjj, 
Q ,  N, are computed via the least-squares best-fit regression 
plane analysis; Vef and Bwy are then evaluated. 

Method 11-Least-squares best-fit regression plane using all 
data: The inert parameters oov and m, are known. For each 
value of j from the data, ranked in accordance with the value of 
njj, the values of Pji associated with { oj (Yo) [ 1 - Rj (Yo)], n } 

applied to equation (55), Q, and N, are computed; Vef and B ,  
are then evaluated. 

Method 111-Least-squares best-fit regression plane to evalu- 
ate unsubscripted B: The value of B in equation (49) is not 
model dependent and can be obtained using all the rupture data 
(inert and subcritical crack growth). The transformed maxi- 
mum principal uniaxial stress oljio. ( Yo) in equation (52) is 
taken as the inert strength distribuhon. The inert strength is 
associated with { oj (Yo) [l - Rj (Yo)], nji} by equivalence of 
rank. For each j varying from 1 to q, the subscript i varies from 
1 to p. There are p-specimens tested for each value of j .  From 
equation (52), 

are obtained. From a least-squares best-fit analysis of the & 

tn n fi + 2'' oljj,o (YO ) = pn  oljj,o ( y o  ) - <yo 11 
-N, trip- Rj(Yo)] + tn B (58) 

The data are substituted into equation (58) to solve for Q,, N,, 
and B. 

Method N-Maximum likelihood estimation using all data: 

Bm assumed unique to the data The inert parameters are known. 
Based on LSBF results, the values N ,  = Nassumed and 
Q, = Qassumed are assumed. The data are transformed via 
equation (56). The MLE method is applied to equation (57), 
with nvj as the variate to solve for mJ(QV-2) and then to 
compute Q,. This value is then compared with the assumed 
value. If QvuM is within a specified tolerauce of QasSd, 
the solution is obtained. If not, the next value of Q, is assumed to 
be the average of these two values. If no solution exists, the 
process is restarted with a new value for N,,,,,. 

This iterative process involves deteminin g values Q,, N,, and 

Experimental Applications 
The examples in this section employ some of the equations 

presented in the preceding theoretical sections. It is under- 
stood in this section that failure occurs at location Yo, and 
therefore said notation will be omitted in the subsequently 
developed equations. Inert room-temperature and dynamic 
fatigue fracture data are analyzed for (a) soda lime glass, 
ring-on-ring square plate test specimens and (b) sintered 
alpha silicon carbide (SASC) material obtained from O-ring 
and C-ring specimens at 1200 and 1300 "C. 

For the soda lime glass material, inert parameters are 
obtained using the least-squares best-fit (LSBF) and maxi- 
mum likelihood estimation (MLE) methods. Dynamic fatigue 
data are then utilized in conjunction with these known inert 
parameters (obtained via the LSBF and MLE methods) to 
generate fatigue parameters for the soda lime glass. This 
approach was used to determine fatigue parameters for the 
LSBF method. The MLE method did not converge to a solu- 
tion. The results of these methods are presented. Finally, the 
soda lime glass dynamic fatigue data are used in conjunction 
with the median deviation (MD) method to obtain the cumu- 
lative distribution curve defined by the Weibull parameter 
m,, the fatigue parameters N,, and the product B ,  02-2. 

For the sintered alpha silicon carbide material, inert pa- 
rameters are obtained using the least-squares best-fit (LSBF) 
and maximum likelihood estimation (MLE) methods. Dy- 
namic fatigue data are then utilized in conjunction with these 
known inert parameters (obtained via the LSBF and MLE 
methods) to generate fatigue parameters for the SASC 
material. 

Simulations have shown (ref. 11) that the standard devia- 
tion for the MLE method is smaller than that for the LSBF 
method. However, all experimental data reflect some degree 
of error (ref. 12) and flaw variability. Both methods (MLE 
and LSBF) are used in the determination of the relevant 
parameters. 
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TABLE 11.-INERT DATA FROM SODA LIME GLASS 

1.5420 
1.4520 
1.5420 
1.5220 
1.5050 
1.5340 
1.4920 
1.5190 
1.4480 
1.5320 
1.5310 
1.5660 
1.4950 
1.4940 
1.4370 

Soda Lime Glass 

0.4285 
.6478 
.7980 
.5124 
.7424 

1.5070 
3223 

1.4640 
1.0920 
1.2260 
1.31 10 
1.8130 
1.4800 
1.5880 
1.5230 

Inert data (table n> and dynamic fatigue data (table III) were 
obtained from soda lime glass ring-on-ring specimens (fig. 1). 
For this material, inherent surface flaws were the source of 
failure (Nemeth, N.N. et al.: CARESLEE Ceramic Analysis 
and Reliability Evaluation of Structures Life Prediction Pro- 
gram. NASA Lewis Research Center, unpublished data, 1993). 
The radial stress or and tangential stress om on the tensile 
loaded surface are equal for radius r I R ,  the radius of the load 
ring 

where P is the applied load, h is the specimen thickness, v is 
Poisson's ratio, and R, is the diagonal half-length of the square 
plate specimen (fig. 1). The maximum principal stress for 
r 2 Ri is the tangential stress 

Inert data anaEysiS.-For the soda lime glass material, inert 
parameters are obtained using the least-squares best-fit and maxi- 
mum likelihood estimation methods. 

For the least-squares best-fit method applied to the inert data, 

Cn Cn - = m, Cn ofi - m, Cn Og, (61) [ [ 1 4 1  

where Pfi is the probability of failure of the J& specimen, 
obtained from the ranking of ofi; m, is the Weibull modulus; ofi 
is the maximum tangential stress at failure of the ~ " h  specimen; 
and oes is the characteristics strength. Figure 2 shows a plot of 
the ring-on-ring inert data and the solution obtained using the 
LSBF method. 

For the maximum likelihood estimation method applied to 
the inert data, 

rhickness 
h, 

1.0990 
1 A 3 0  
1.5540 
1.3650 
1.2910 
.8305 
.9756 

1.7910 
.5491 

1 .goo0 
.6928 
.6418 
,4529 
,6357 
.6153 

mm 

LING-ON-FUNG SPECIME 

kN mm 

:factare load 
p .  
kN 

1.4150 
1.5510 
1.4920 
I .4340 
1.5250 
1.5180 
1.4430 
1.5260 
1.4780 
1.5170 
1.4750 
1.5590 
1.5260 
1.5450 
1.4950 

TABLE 111.-DYNAMIC FATIGUE DATA FROM 
SODA LIME GLASS RING-ON-RING 

SPECIMENS 

Fracture stress, 0, MPa (at various stress rates, 
u, MPdSec) 

Ofli at 
u,=0.02 

188.677 
43.414 

238.163 
163.981 
214.390 
180.8 1 1 
206.690 
135.8 19 
198.489 
273.027 
143.526 
113.158 
212.336 
137.096 
67.769 

246.808 
247.317 
159.628 
164.883 
I 14.253 
2 16.749 
216.407 
97.967 
98.705 

132.668 
108.464 
120.170 
169.924 
172.539 
246.477 
--------- 

138.963 
186.046 
53.900 

226.200 
228.609 
110.241 
355.705 
59.525 

231.543 
63.768 

312.097 
184.891 
255.1 19 
245.585 
112.365 
164.962 
162.755 
150.47 1 
77.447 

151.813 
215.165 
129.921 
135.024 
128.776 
136.033 
268.623 
24 1.587 
236.632 
177.639 
188.238 
191.009 

239.176 
324.237 
112.060 
69.959 

224.201 
360.756 
174.677 
312.900 
182.485 
27 1.662 
311.681 
226.959 
99.672 

164.974 
104.515 
286.925 
264.994 
109.795 
133.134 
32 1.845 
136.249 
140.760 
213.386 
234.744 
373.915 
313.608 
269.948 
288.936 
227.179 
326.009 
--------- 

--- 
74i 2' 

6, = 20.M 

267.279 
250.898 
302.116 
200.791 
85.021 

533.321 
307.547 
282.393 
377.91 1 
31 1.192 
172.435 
202.541 
253.662 
339.116 
21 1.909 
259.588 
237.630 
302.684 
360.206 
3 10.427 
293.215 
138.294 
320.906 
269.308 
470.079 
252.308 
257.600 
335.608 
223.475 
428.672 
____I__- 
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A 

L 

Outer 
support inner 
ring 7 loaded 

ring 7 

A 

J 

h 
1 

V 
Applied load, P 

Figure 1 .-Ring-on-ring loaded square plate 
specimen. Poisson's ratio, u, 0.22; outer ring radius, 
R,, 16.090 mm; inner ring radius, Ri, 5.01 5 mm; 
diagonal half-length, R,, 35.921 mm. 

-4 
4.5 5.0 5.5 6.0 6.5 

en ufi 

Figure 2.-Ring-on-ring inert data and least-squares 
best-fit line. Weibull modulus, m,, 2.675; scale 
factor, a,,, 15.76 MPa-mUms; effective area, A,, 
191 .O mm2. 

Forj varying from 1 to 4 (q = total number of test specimens), 

and 

The scale factor is cos = Oe , , where the effective area is 

and o,(r) = ob(r) is the maximum principal tangential stress 
distribution. Figure 3 shows a plot of the ring-on-ring inert data 
and the solution obtained using the MLE method. 
Dynamic fatigue data analysis.-In this section, fatigue 

parmeters are determined using dynamic fatigue data in con- 
junction with known inert parameters ms and cos (obtained via 
the LSBF and MLE methods). The effective area AB is assumed 
constant for all specimens. 

For the least-squares best-fit method applied to the dynamic 
fatigue data, equation (22) is utilized for surface flaws by replac- 
ing subscript v with s. After some algebraic manipulation, where 
6 is the independent variable, the linear regression function is 
given by 

1 - -- 
NS 
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where the effective area is 

Y 

Figure 4 is a plot of the ring-on-ring dynamic fatigue daw, also 
shown is the solution obtained using the LSBF method applied 
to the median data values given in table N. Figure 5 is a plot of 
the ring-on-ring dynamic fatigue data and shows the solution, 
obtained using the LSBF method, to all the dynamic fatigue data 
given in table HI. 

2r 

Stress rate, 
& ., 

J 
Mpdsec 

0.02 
.20 

2.00 
20.00 

- 4 4  
4.5 5.0 5.5 6.0 6.5 

en afi 

Figure 3.-fling-on-ring inert data and maximum 
likelihood estimation line. Weibull modulus, 
m,, 2.869; scale factor,a,,, 19.20 MPa-mWms; 
effective area, A,, 182.6 mm2. 

Tangential fracture stress, 

OB'  
Mpa 

171.23 
177.64 
230.96 
275.85 

0 
Median values 

C 

4, @ t OOO 
- -6.0 E 
4, 

- 
.- 
I - .- -5.6 

0 Alldata .- e ' -5.8 
v- 

If the effective area Aef is not constant (Le., AeBi), equa- 
tion (66) can be written in another form: 

1 
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The process for computing N, is iterative. The value of Aeji is 
assumed to be constant for all specimens (A .is constant). This 
constant value is used to calculate a starting v$ie for N, (eq. (66)). 
Then, this starting value of N, and the specimen Aejj values are 
used to begin the iterative process. Iteration continues until the 
assumed value of N, is equal to (or within some specified 
tolerance of) the computed value of N,. 

Since oji = c?j$i, where %i is the time to failure of the ith 
specimen under stress rate Oj  , another form of equation (66) for 
surface flaws is 

(70) p 

i? 
d 
3 

6 
3 
J 
U 
- 

- - 

U 

J 
P 

0 

b 

0 

For the maximum likelihood estimation method applied to 
the dynamic fatigue data, with m, and cos known, analogous to 
equations (62) and (22) is 

4- 

I 

2 -  

where the variate Sji is 

and parameter Z is 

The value of Pji is obtained from the ranking of the failure 
stress. 

The solution is obtained by assuming an appropriate range of 
values for N, based on the least-squares best-fit result. With the 
value of N, ked, a starting value form, is assumed equal to the 
inert value. Based on this value, a computed Weibull modulus 
msc is obtained. A new value of m, is assumed equal to (m, + 
msc)/2, and the process is repeated until convergence. Conver- 
gence is assumed to occur when the absolute value of the 
difference (m, - mJ is < 0.01. The process is repeated, chang- 
ing the assumed value of N, until the computed value of msc is 
equal to the known inert value. For the soda lime glass dynamic 
fatigue data examined here, this convergence did not occur, as 
shown in figure 6. The inert value of the Weibull modulus 
obtained via the maximum likelihood method is 2.869. At the 
start, for a fixed value of N, = 4 and an assumed m, = 2.675, 
convergence occurred after six iterations to msc = 0.856. In most 
cases, convergence occurred after two iterations. For N, varying 
from 4 to 44, the largest value of msc obtained was 2.570. The 
computed modulus did not converge to the inert value of the 
Weibull modulus, 2.869. 

The value of B,, for the ring-on-ring square plate test 
specimen is obtained via the specimen uniaxial Weibull model 
and least-squares best-fit method. The stress transformation 
equation is 

Thus, the probability of failure is expressed as 
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0.3245 I- 

becomes the basis for a least-squares best-fit evaluation. Equat- 
ing the risk of rupture of the specimen uniaxial Weibull model to 
that of the uniaxial Weibull model yields the relationship 

For large values of Ns,Aef tends towardd, and B, tends toward 

For the median deviation method applied to the soda lime 
glass dynamic fatigue data, it is assumed that no inert data are 
available. From equation (26) (for surface flaws replace sub- 
script v with s), the value of N, = 13.1 produces the minimum 
value M D -  Figure 7 shows the variation of the MD value as 
a function of the assumed value of N,. For assumed values of N, 
that are less than 10.0 and greater than 13.1, the MD value 
continuously increases. A plot of the distribution solution 
versus the experimental fatigue data is given in figure 8. 

BWS.  

Sintered Alpha Silicon Carbide (SASC) 

Inert data (table V) and dynamic fatigue data (table VI) were 
obtained from sintered alpha silicon carbide O-ring and C-ring 
specimens tested at temperatures of 1200 and 1300 "C. Schematic 

l o  

Figure 8.-Median deviation distribution for fatigue 
parameter, Ns, 13.1; Weibull modulus, ms, 2.33; 
Z, 1083.8 (MPaNs-sec)ll(h's-z). The terms Pfj and 
Z are defined in equation (70). 

diagrams of the specimens, including nominal dimensions, are 
in figure 9. The SASC dynamic fatigue data are the mean values 
based on at least seven specimens. They are assumed herein to 
be the median values. For this material, inherent volume flaws 
were the source of failure (refs. 4 and 5). 

Inert &tu analysis.-For the sintered alpha silicon carbide 
material, inert parameters are obtained using the least-squares 
best-fit and maximum likelihood estimation methods. Fig- 
ures 10 to 13 show plots of the SASC O-ring and C-ring inert 
data and the solutions obtained using the least-squares best-fit 
method. Figures 14 to 17 show plots of the SASC O-ring and 
C-ring inert data and the solutions obtained using the maxi- 
mum likelihood estimation method. 
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TABLE V.--INERT DATA FROM SINTERED 
ALPHA SILICON CARBIDE O-RING 

O-ring 

AND 4 

Specimen 
number, 

j 

c-ring 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Stress rate, Temperature, OC 

- 
350.3 
286.4 
268.1 
242.4 
338.2 
294.7 
284.3 
300.5 
248.6 
287.2 
268.6 
283.2 
265.7 
307.1 
274.3 
276.3 
291.7 
303.5 
293.1 
272.4 
_.__ 

350.0 
35.0 

3.5 

- 
281.0 
309.4 
265.4 
301.1 
337.9 
253.5 
273.3 
233.9 
291.0 
302.3 
272.1 
284.1 
313.9 
231.3 
282.0 
299.9 
268.6 
220.6 
227.7 
--- __ 

275.7 313.5 
251.2 271.7 
234.2 249.8 

- 
256.9 
237.0 
215.9 
254.2 
213.9 
23 1.9 
215.7 
246.6 
296.9 
219.2 
248.4 
262.0 
291.3 
264.4 
25 1.4 
243.0 
200.2 
266.4 
200.8 
289.9 

100.0 253.9 
10.0 229.3 

1 .o 218.2 

- 
249.5 
207.5 
235.9 
247.5 
180.6 
249.0 
198.2 
209.0 
202.1 
277.3 
266.4 
305.6 
259.6 
253.0 
300.0 
180.8 
316.3 
278.9 
285.7 
_ _ _  

256.0 
225.4 
205.4 

Dynamic fatigue data anuZysis.-Table VI contains median 
values of SASC O-ring and C-ring dynamic fatigue test data at 
1200 and 1300 "C and at three stress rates. The least-squares 
best-fit method is applied to the dynamic fatigue data by using 
the inert parameters obtained via the MLE method. Figures 18 
and 19 show plots of the O-ring and C-ring dynamic fatigue 
data and the solutions obtained using the least-squares best-fit 

O-ring in diametral compression 

C-ring in compression 

Figure 9.4-ring and C-ring test specimen configuration 
and nominal dimensions. Outer radius, Ro, 22.2 mm; 
inner radius, Rj, 17.6 mm; width, 4.6 mm. 
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Figure 11 .-Least-squares best fit to 1300 "C SASC 
O-ring inert data. Weibull modulus, my, 9.66; scale 
factor, uov, 41.59 MPa-mwmv; effective volume, 
V, 7.07 mm3. 
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Figure 13.-Least-squares best fit to 1300 "C SASC C-ring 
inert data. Weibull modulus, my, 6.56; scale factor, uov, 
20.91 MPa-m3/mv; effective volume, V,, 58.00 mm3. 

z - 2 c  ~ - 3 t  io I , 
4 

5.4 5.6 5.8 6.0 
en ufi 

Figure 14.-Maximum likelihood estimation fit to 1200 "C 
SASC O-ring inert data. Weibull modulus, my, 10.68; 
scale factor, a,, 51.02 MPa-m3%; effective volume, 
V,, 6.32 mm3. 
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Figure 15.-Maximum likelihood estimation fit to 1300 "C 
SASC O-ring inert data. Weibull modulus, my, 10.01 ; 
scale factor, uov, 44.49 MPa-m3/"'v; effective volume, 
We, 7.07 mm3 
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Figure 17.-Maximum likelihood estimation fit to 1300 "C 
SASC C-ring inert data. Weibull modulus, my, 7.04; 
scale factor, a,,, 24.82 MPa-m3/"'v; effective volume, 
We, 58.00 mm3. 

Temperature, Weibull Scale Fatigue parameters 

mV UOV' MPa2-hr 
"C modulus, factor, N" 5w9 

M Pa-m3Imv 

0 1200 10.68 51-02 27.23 0.112 
0 1300 10.01 44-49 19.30 4.992 

0 
6.8  ' 

-2 2 4 6 
[nuf + ( 2 en {en [ I/(I -pf j i )  1)) /mV - en 

Figure 18,-Least-squares best fit to SASC O-ring 
dynamic fatigue median data. 
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Temperature, Weibull Scale Fatigue parameters 

mV wow, MPa2-hr 
"C modulus, factor, NV %v' 

MPa-m% 

0 1200 9.46 42-52 29.43 0.461 
0 1300 7.04 24-82 19.93 0.551 

.- .-. 
4- 
6 -5.40 

I 

Method 

I A 

Data results 

Inert Dynamic fatigue 

All data Median values Effective 
area, 

Weibull Characteris- Scale Effective Surface Weibull Surface Weibull 
modulus, tic strength, factor, area, fatigue fatigue fatigue fatigue -2 A@ 

A,, exponent, parameter, exponent, parameter, 

ma*-hr ma2-hr 

0 0 s .  
mS 06 SI 

m a  Mpa-m2/m. mm2 Ns BWS, NS B W S ,  

Figure 19.-Least-squares best fit to SASC C-ring 
dynamic fatigue median data. 

-_- LeaSt-SqwS 2.675 395.3 22.37 (b) 
best-fit 
median values 

Maximum 2.871 394.2 --- --- 
likelihood 

Median 2.344 _-- 15.00 (b) 11.88 
deviation 

--- 

method based on equation (66). The slope of the line is given by 
l/Nv. For median values, the formulation generally used is 

12.60 (b) (b) -_- 

--- --- _-- _ _ -  

(b) --- --- 2.29 

Cn ( i j  

N, +1 
Cn ofii = - + cji 

where 

(74) 

and 

Cji is a constant since Pfii = 0.5 for the median values. 
The general equation (66) was used to compute the fatigue 
parameters. 
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TABLE VII1.-SUMMARY OF RESULTS FOR SINTERED ALPHA SILICON CARBIDE SPECIMENS 

Table VI1 contains a summary of the inert and fatigue 
parameters from the analysis of the soda lime glass data. 
Table VIII contains a summary of the inert and fatigue param- 
eters from the analysis of the sintered alpha silicon carbide data. 

The theoretical development and experimental applications 
presented indicate that the general equation (66) or (73) should 
be applied to obtain the fatigue parameters when all the speci- 
men rupture data are used. For the median values, equation (66) 
was used in preference to equation (74). 

Conclusions 
A reliability analysis of monolithic structural ceramics 

depends on material inert and fatigue parameters obtained from 
fast-fracture and time-dependent stress rupture data. Integrated 
design computer programs such as CARESLIFE (Ceramics 
Analysis and Reliability Evaluation of Structures LIFE Predic- 
tion Program) use analytical methods such as those presented 
in this report to estimate material parameters and subsequently 
determine the time-dependent reliability of complex structural 
ceramic components. 

For fast-fracture reliability analysis, specimen rupture data 
are utilized to determine the inert material Weibull parameters. 
In the examples presented, the least-squares best-fit (LSBF) 
and maximum Iikelihood estimation W E )  methods were 
applied to obtain the material inert parameters for soda lime 
glass ring-on-ring and sintered alpha silicon carbide O-ring and 
C-ring specimens. Simulations have shown that the standard 
deviation for the MLE method is smaller than that for the LSBF 
method. The direct relationship of the standard deviation to the 
preciseness of the value calculated suggests that the MLE 
method is preferred. However, all experimental data reflect 
some degree of error as well as flaw variability. Furthermore, 

the two-parameter Weibull distribution is assumed adequate 
and the effect of the shear stress distribution in the flexure test 
bar is assumed negligible. With the many apparent uncertain- 
ties, both methods (MLE and LSBF) are presumed acceptable. 

For he-dependent reliability analysis, the material fatigue 
parameters, in addition to the inert Weibull parameters, must be 
evaluated. In the examples presented, dynamic fatigue data are 
utilized in conjunction with known inert parameters 
(obtained via the LSBF andor MLE methods) to generate 
material fatigue parameters for the soda lime glass and SASC. 
Both examples included illustrate the successful use of the 
LSBF method to determine the fatigue parameters. However, 
the MLE method applied to the dynamic fatigue soda lime glass 
data from ring-on-ring specimens did not converge to a solu- 
tion. Athird approach, the median deviation method (MD), was 
also successfully used in conjunction with the dynamic fatigue 
data to obtain the cumulative distribution curve for the soda 
lime glass. 

A comparison of results obtained for different models 
(Weibull and Batdorf) is given. Different models resulted in 
different equations for the effective area and fatigue param- 
eters. The median deviation method was applied to the dynamic 
fatigue data to obtain a qualitative estimate of the Weibull 
modulus, exponential fatigue parameter, and the product 
parameter. Although these results are sufficient to define the 
probability distribution function of the test data, the individual 
values (scale factor and fatigue constant) comprising the prod- 
uct parameter are necessary for life prediction. 

Lewis Research Center 
National Aeronautics and Space Administration 
Cleveland, Ohio, September 7, 1995 
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